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SUMMARY tion of infection, with evidence that host responses may be more

Tuberculosis (TB) is a leading cause of death worldwide despite ~ ¢ffective during acute infection than during chronic infection.
the availability of effective chemotherapy for over 60 years. Al- "ljhlrd, natur.al history studies indicate that res1st.ance to TB infec-
though Mycobacterium bovis bacillus Calmette-Guérin (BCG) tion occurs in a small percentage of the. populatlon: Fourth, case-
vaccination protects against active TB discase in some popula- control studies of BCG indicate that it may provide protection

. . . . . from infection. Fifth, prevention-of-infection trials would have
tions, its efficacy is suboptimal. Development of an effective TB . . .
o o smaller sample sizes and a shorter duration than disease preven-
vaccine is a top global priority that has been hampered by an

) ) e ) tion trials and would enable opportunities to search for correlates
incomplete understanding of protective immunity to TB. Thus  of jmmunity as well as serve as a criterion for selecting a vaccine

far, preventing TB disease, rather than infection, has been the product for testing in a larger TB disease prevention trial. To-
primary target for vaccine development. Several areas of research

highlight the importance of including preinfection vaccines in the

development pipeline. First, epidemiology and mathematical Address correspondence to Thomas R. Hawn, thawn@u.washington.edu.
modeling studies indicate that a preinfection vaccine would have a Copyright © 2014, American Society for Microbiology. All Rights Reserved.
high population-level impact for control of TB disease. Second, doi:10.1128/MMBR.00021-14

immunology studies support the rationale for targeting preven-
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gether, these points support expanding the focus of TB vaccine
development efforts to include prevention of infection as a pri-
mary goal along with vaccines or other interventions that reduce
the rate of transmission and reactivation.

INTRODUCTION

ycobacterium tuberculosis infects approximately one-third of

humanity and is a leading infectious cause of mortality in the
world (1-3). Obstacles to the control of tuberculosis (TB) include
difficulties and delays in diagnosis, lengthy treatment regimens,
drug resistance, the lack of a highly efficacious vaccine, and an
incomplete understanding of what controls transmission, infec-
tivity, reactivation, and progression of disease (3). Although vac-
cination with Mycobacterium bovis bacillus Calmette-Guérin
(BCG) protects against TB disease and mortality in some popula-
tions, its efficacy is suboptimal and clearly not adequate for disease
control (4-8). Developing a more effective vaccine is a high world-
wide priority. Investments toward this goal are being made
through several approaches, including research leading to a more
thorough understanding of the host response to infection, im-
provement of preclinical models, and a substantial increase in
human clinical trial evaluations of candidate vaccines (9, 10).

RATIONALE FOR A PREINFECTION VACCINE

Clinical development of an efficacious TB vaccine requires several
choices, including clinical goals (to prevent infection, prevent
progression from latent to active disease, or shorten duration of
drug treatment), target age, immune status (HIV positive versus
negative), geographic location (settings with low, medium, or
high endemicity), regimens (replace or boost BCG), platforms
(whole cell, viral vector, or adjuvanted proteins), and antigens
(RD1 associated, constitutive, or dormancy associated). There are
currently 14 vaccine candidates in phase I or II clinical trials
(Table 1), and they are largely focused on preventing the develop-
ment of active TB disease rather than preventing infection (11).
Why is there a gap in the development of a TB vaccine that pre-
vents infection? Several factors may contribute to this gap. First,
some believe that a vaccine that prevents disease rather than in-
fection would have a higher impact for public health control of
TB. Second, there is a perception that the immune system cannot
prevent M. tuberculosis infection. Finally, due to inadequacies of
current animal models to evaluate infection as an endpoint, pre-
clinical data for the majority of candidate vaccines do not suffi-
ciently support advancement to clinical testing for infection pre-
vention.

In this article, we present a multifaceted argument on the mer-
its of pursuing a preinfection vaccine, that is, a vaccine which is
developed to prevent infection predominantly in people who have
not been previously exposed to M. tuberculosis. We begin with the
epidemiological data that underscore the potential population
benefits of targeting a vaccine to prevent infection. We then high-
light biological and immunological steps in pathogenesis that are
amenable to early-stage vaccine development. We subsequently
review lessons learned from natural history studies which suggest
that humans and animals exhibit partial protection from TB in-
fection. We also examine the evidence on BCG and its ability to
prevent TB infection. Finally, we use mathematical modeling to
assess the plausibility of developing a preexposure vaccine. In ad-
dition to the opportunities in this area, there are challenges, in-
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cluding selection of vaccine products, endpoint assays, endpoint
definitions, sample sizes, and target populations. Together, these
lines of evidence support shifting current priorities to include pre-
vention of infection as a primary goal in the development of a TB
vaccine.

TB EPIDEMIOLOGY IN HIGH-PREVALENCE SETTINGS

The recently reported Global Burden of Disease Study documents
the ongoing worldwide impact of the TB epidemic (12). TB is the
second-highest infectious cause of death worldwide, with
1,196,000 deaths in 2010 (12). The leading cause was HIV infec-
tion (1,465,000 deaths), with a substantial proportion of those
deaths due to TB. The burden of TB disease is unevenly distrib-
uted worldwide, with South Africa, India, and China reporting the
highest numbers of cases. Although recent data suggest that TB
incidence has decreased in the African region, the estimated an-
nual incidence rates remained over 255/100,000 in 2012 (13).
With these high rates of TB disease, efforts to reduce infection
could be critical components of an intervention that decreases the
TB morbidity and mortality. Development of a preinfection vac-
cine requires choosing the age for vaccination, suitability for a
range of settings with different exposure intensities, and efficacy in
HIV-positive and -negative hosts. In this section, we describe the
epidemiological data that inform these decisions.

Age-Specific Prevalence and Incidence of TB Infection and
Disease

What is the ideal age to administer a preinfection vaccine? With a
highly immunogenic vaccine that induces long-term memory re-
sponses, administration at birth offers advantages such as oppor-
tunities to deliver high rates of vaccination. One disadvantage is
the immature immune system of the infant. For a preinfection
vaccine, are there epidemiological data to support a rationale for
administering the vaccine at a specific age? This answer is related
to age-specific incidence and prevalence rates and whether there
are any ages where humans are “relatively protected” from TB and
may have a higher likelihood of developing a protective immune
response. Tuberculin skin testing (TST) has been the most widely
used of all the immunological tests for estimation of the preva-
lence, incidence, and trend of M. tuberculosis infection in popula-
tions, despite concerns over its sensitivity and specificity (14). In a
recently reported study conducted in Cape Town, South Africa,
rapidly increasing prevalence of TST responses was seen in healthy
HIV-negative township residents between 5 years and 40 years of
age (15). Using a cutoff of a =10-mm diameter of induration as
evidence of latent TB infection (LTBI), almost a fifth of children at
school entry were already infected. By the average age of sexual
debut at 15 years, 50% of adolescents in these communities were
infected (16, 17). By the age of 25 years when HIV prevalence
peaks in South Africa, approximately 75% of individuals had evi-
dence of LTBI (15, 18). Between the ages of 5 years and 15 years,
the mean annual risk of TB infection remained exceptionally high
(range, 3.9% to 4.8%), while the force of infection (the risk of
infection in the residual pool of uninfected individuals) was max-
imal at 7.8% at the age of 15 years (15, 19). The maximal risk of
acquisition in the mid-teenage years may reflect social mixing
patterns and associated TB exposure in this age group (15, 20, 21).
The annual risk of TB infection is so high that individuals may be
recurrently exposed to M. tuberculosis (22, 23). Recurrent infec-
tion may result in infection with multiple strains and could po-
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tentially explain the high rates of TB recurrence in individuals
receiving curative TB treatment (15, 24, 25). Together, these data
suggest that a preinfection vaccine will need to be administered by
early adolescence, before most individuals have become infected.

Non-HIV-associated TB disease varies markedly between age
strata. In Cape Town, 3 distinct peaks in TB incidence have been
observed. The first peak occurs before 4 years of age. Childhood
TB disease notifications rapidly decrease after the age of 5 years to
anadir between 10 and 14 years. This decline in TB disease occurs
despite a high continuing annual TB infection rate (19, 22, 23, 26),
a phenomenon that has been widely recognized but is poorly un-
derstood (15, 27-29). There are similarities with the age distribu-
tion of meningococcal disease, which has a nadir between the ages
of 7 and 14 years (30), followed by an adolescent peak that may be
influenced by social mixing patterns but which is also character-
ized by more clonal genotypes affecting adolescents. A strikingly
similar prepubescent nadir in cutaneous leishmaniasis caused by
several species of the protozoan parasite Leishmania may support
an immunological etiology (31). Human resistance to cutaneous
leishmaniasis is dependent on Th1 responses (32). While it may be
speculated that this has an immunological etiology, further re-
search to understand this phenomenon is warranted. If there is an
immune etiology to the relative protection against developing TB
disease in this age group, administering a vaccine in this time
window may offer benefit.

TB notification rates rapidly increase from the nadir at 10 to 14
years to a second peak between 20 and 24 years. As TB disease is
more frequent soon after infection (27, 33-36), this rapidly in-
creasing incidence is consistent with very high infection rates (4.5
to 7% per annum) reported among adolescents in Cape Town (15,
17, 19, 23) and up to 16% in some areas (M. Hatherill, personal
communication). These first two peaks have occurred throughout
100 years of TB notification data for Cape Town, and this second
peak represents a consistent and ongoing contribution to the TB
epidemic in numbers of notified cases.

Notification rates continue to be elevated for older age groups
and consist of almost equal proportions of new and recurrent TB
disease. Recurrent disease in Cape Town and other high-burden
settings has been reported to result predominantly from reinfec-
tion (37-39). Multiple reinfections are to be predicted when the
prevailing force of TB infection exceeds 1% per annum (15). The
total TB burden due to retreatment disease in Cape Town was
greater (26%) than that reported for South Africa (18.8%) or the
African continent (9.9%) (15, 40), and this may be related to the
high prevailing force of TB infection rather than to inadequate or
poor case management. Vaccines targeting prevention of reinfec-
tion may be an additional feasible strategy to pursue.

HIV-TB Coinfection

The high force of infection in adolescence before the acquisition of
HIV infection may be a key factor underlying the explosive HIV-
associated TB epidemic in South Africa (17, 41). HIV prevalence
among 20- to 39-year-olds in these communities reached 30% in
2002, and the current data suggest that approximately two-thirds
of these individuals were likely to have already been infected with
M. tuberculosis prior to HIV acquisition. Thus, preexisting M. tu-
berculosis infection may be fuelling the high rates of HIV-associ-
ated TB in southern Africa (15, 18).

In recent years, there has been a concerted effort to increase
provider-initiated HIV testing within the TB service in South Af-

December 2014 Volume 78 Number 4

TB Vaccines and Prevention of Infection

rica (42, 43). In 2009, HIV status was determined for >90% of all
TB notifications in the city of Cape Town, enabling stratification
of the majority of TB cases by HIV infection status (44). The TB
notifications from this city were more than twice the combined
annual caseloads of the United States and Canada (40), and rates
of both HIV-associated and non-HIV-associated TB were ex-
tremely high. The estimated lifetime TB disease risk of 22% was
approximately double that observed in studies of TB acquired
during childhood in the United Kingdom in the 1950s (27, 33) and
was similar to estimates of cumulative TB disease risk in Europe in
the early 20th century, prior to the advent of chemotherapy
(33, 34).

HIV-infected individuals had a 17-fold-increased risk of TB
compared with HIV-negative peers, and the burden of HIV-pos-
itive TB closely mirrored the prevalence of HIV infection in the
city. Interpretation of age-specific incidence is more complex in
the HIV-positive population, as age is only indirectly related to
time from acquisition of HIV infection and access to antiretroviral
therapy (ART) is an increasing confounder.

The long-term aim of TB control is to lower infection rates in
successive generations. The present facility-based TB control is
failing to decrease TB infection rates in children and adolescents in
South Africa. Systematic evaluation and reduction of infection
rates in these high-burden communities should be incorporated
as a target of TB control. The development of an effective prein-
fection vaccine could be a critical component of such efforts.

BIOLOGICAL AND IMMUNOLOGICAL INTERVENTION POINTS
FROM EXPOSURE TO INFECTION

Are there immunological reasons to develop a preinfection TB
vaccine? The answers to this question are related to the pathogen-
esis steps that occur upon exposure to M. tuberculosis and estab-
lishment of infection. Which of these steps are plausible interven-
tion points for a vaccine? From recognition to killing, the
macrophage plays a central role in M. tuberculosis pathogenesis.
First, the bacilli bind to receptors on macrophages and other
myeloid cells (monocytes, dendritic cells, and neutrophils) in
lungs, where they are detected by the innate immune system (45,
46). Several phagocyte receptors mediate detection of M. tubercu-
losis, including Toll-like receptors (TLRs) (TLRI, -2, -6, -8, and
-9), Nod-like receptors (NLRs) (NOD2), and C-type lectin recep-
tors (CLRs) (CLEC4E [Mincle], mannose receptor [MR], and
dendritic cell-specific intracellular adhesion molecule-3 [I[CAM-
3]-grabbing nonintegrin [DC-SIGN and CD209]), and DNA sen-
sors (STING) (47-56). After binding and recognition by innate
immune receptors, inflammatory molecules such as tumor necro-
sis factor (TNF), interleukin-6 (IL-6), IL-10, IL-1B, and IL-12 are
secreted. M. tuberculosis enters a phagocytic vacuole and usually
arrests maturation of the phagolysosome where it resides, often
for an extended period of time. The macrophage has several path-
ways that can kill or limit M. tuberculosis replication, including
synthesis of molecules with direct antimicrobial activity (e.g., re-
active nitrogen intermediates, reactive oxygen intermediates, and
antimicrobial peptides), activation of autophagy, and apoptotic
cell death (as opposed to necrotic death, which favors M. tubercu-
losis replication and spread to neighboring cells). In the classical
model of a successful host response, T cells produce gamma inter-
feron (IFN-vy), which activates macrophages to kill M. tuberculosis
(57). Although in vitro and in vivo animal model evidence sup-
ports the importance of IFN-vy in this process, the components of
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FIG 1 Biological rationale for efficacy of a preinfection TB vaccine. The theoretical benefits of a preinfection vaccine in human lungs after exposure to M.
tuberculosis (MTB) are depicted. In an unvaccinated individual, development of M. tuberculosis-specific T cells is delayed in comparison to that for other
infections. During latent infection, M. tuberculosis establishes a persistent niche in humans in a location and metabolic state that is poorly understood. Vaccinated
individuals could have M. tuberculosis-specific T cells available at high frequency during the time of exposure, with the potential to activate macrophages to kill
M. tuberculosis while it is still metabolically active and before it establishes a persistent infection. In addition, the quality of the T-cell response may be different
when shaped by chronic infection versus vaccination. T, M. tuberculosis-specific T cell.

a successful immune response involve more than IFN-vy and are
largely unknown (58, 59). For example, in a BCG vaccine trial in
infants, frequencies of BCG-specific IFN-y CD4 or CD8 T cells
were not associated with risk of TB disease. These findings high-
light the importance of discovering and distinguishing what are
necessary versus sufficient conditions for protection (60). Acti-
vated macrophages and other host cells (T cells, B cells, and fibro-
blasts) surround the M. tuberculosis-infected cells in an organized
display, a granuloma, creating hypoxic, acidic, nutrient-poor con-
ditions that are less permissive for M. tuberculosis replication.
However, the bacilli are not always eradicated. Instead, some sur-
vivors adopt a nonreplicating state and can persist for many years,
until HIV infection or other factors restore conditions permissive
for active replication and potential to progress to active TB dis-
ease.

Why is M. tuberculosis not eradicated by the innate and adap-
tive immune responses? Although a robust innate immune re-
sponse is stimulated upon recognition of M. tuberculosis by mac-
rophages, the bacillus employs several mechanisms to promote its
survival, including phagolysosome modification, inhibition of
apoptosis (and promotion of bacillus survival), and inducing traf-
ficking of cells to the granuloma as a means to expand the number
of cells available for infection to increase its survival (46, 52, 61—
69). At the adaptive level, early T-cell responses to M. tuberculosis
are delayed compared to those to other pathogens (46, 70, 71),
including influenza virus (e.g., the murine T-cell response is
within 1 week for influenza virus versus 2 weeks for M. tuberculo-
sis) (72). After humans are exposed, a positive TST does not de-
velop for approximately 6 weeks (73, 74). A similar delay in T-cell
immune responses is observed in mice, and this has been associ-
ated with delayed transport of bacilli from the lung to the draining
lymph node (70, 75, 76). A second feature of adaptive immune
responses to M. tuberculosis is that antigen-specific T cells often
fail to recognize and eradicate M. tuberculosis-infected macro-
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phages (46, 77). Several mechanisms have been linked to impaired
M. tuberculosis killing, including a protected cellular location for
M. tuberculosis during the first week that prevents recognition and
killing (78), inhibition of IFN-y-activated pathways in macro-
phages (79-81), and the development of regulatory T cells (82). In
summary, M. tuberculosis employs multiple mechanisms to in-
hibit innate and adaptive immune responses and to establish a
chronic persistent infection.

The primary focus of TB vaccine efforts thus far has been to
prevent cases of active TB disease. Shifting the goal to preventing
infection offers several advantages for countering the immune
evasion strategies of M. tuberculosis (Fig. 1). First, the delayed
development of CD4 " T-cell responses after M. tuberculosis expo-
sure provides a protected-time window of 6 weeks for the bacillus
to establish infection. If CD4™ T-cell or other effector cell re-
sponses were present at the time of exposure, a major feature of
early M. tuberculosis evasion strategies could be circumvented.
Second, the kinetics of killing M. tuberculosis-infected macro-
phages may also be fundamentally different in acute versus chron-
ically infected cells. If T cells produced IFN-v to activate macro-
phages immediately after infection, clearance of the bacillus may
be more likely due to less time for development of M. tuberculosis-
directed evasion strategies. Nevertheless, some of the immune
evasion strategies would likely present challenges for vaccines di-
rected at preventing infection. First, the influence of regulatory T
cells on vaccine efficacy (VE) would likely affect all stages of infec-
tion. Interestingly, many vaccine efficacy studies use laboratory-
adapted strains that induce minimal Treg responses in murine
models in comparison to those induced by more-virulent clinical
strains such as HN878 (83). Second, the potential existence of a
“protected” location for M. tuberculosis during the first week of
infection poses a challenge even if T cells are present at the time of
exposure. The features and location of this potential protected
area are not known (e.g., lymph node versus alveolar space versus
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interstitium, cell type, and intracellular versus extracellular). This
second concern arose from a murine study testing this concept in
which ESAT-6-specific CD4™ T cells were adoptively transferred
into naive mice before aerosol challenge with M. tuberculosis (78).
Despite the presence of high levels of TH1 effector cells in the
lungs, no protective effect in comparison to control mice was ob-
served until 7 days postchallenge. Third, the quality and magni-
tude of a protective vaccine-induced memory T-cell response may
be different from those of the response generated by primary in-
fection. One study compared the effects of primary (first expo-
sure) and secondary (generated by infecting mice with H37Rv for
30 days and then treating the infection with isoniazid [INH] and
rifampin) T-cell responses on control of M. tuberculosis replica-
tion (84). Although the mice with a secondary immune response
had significantly lower lung M. tuberculosis burdens than naive
mice after M. tuberculosis aerosol rechallenge, there was no evi-
dence of sterilizing immunity or prevention of infection. These
data suggest that the mere presence of M. tuberculosis-specific T
cells at the time of exposure is not sufficient to prevent reinfection.
However, if the T cells were qualitatively different, not directed
against one antigen, and present in higher quantities in the lung at
the time of exposure, protection may be possible. Efforts to mea-
sure the quality, quantity, and location of M. tuberculosis-specific
T cells postvaccination may elucidate mechanisms of protection
in human trials (e.g., measuring activated effector versus central
memory versus effector memory CD4 T cells) (85, 86). Under-
standing why TH1 effector T cells are ineffective during the early
phases of infection and identification of efficacious qualities (or
mechanisms of inhibition of efficacy such as contraction, exhaus-
tion, or Treg induction) will be critical for successful development
of a preinfection vaccine.

IS REDUCING TB ACQUISITION RISK BY VACCINATION
PLAUSIBLE?

Lessons from Natural History Studies

Current TB vaccines in clinical development are focused on de-
veloping T-cell responses to secreted immunodominant antigens
(Table 1) (10). Both infants and adults have been targeted in clin-
ical trials thus far, with primary endpoints that include incidence
of active TB disease as well as mortality from TB (9, 87, 88). Is
there biological data available to address the plausibility of a vac-
cine that protects against TB infection? Vaccine-induced preven-
tion of infection would likely manifest as an adaptive response
capable of clearing the pathogen and thus preventing the estab-
lishment of persistent infection (either completely preventing ini-
tial macrophage infection or rapidly killing/sterilizing the infected
macrophage). We present three arguments that prevention of in-
fection is a feasible goal for TB vaccines. The data supporting these
arguments come from animal model studies, human natural his-
tory cohorts, and BCG vaccine trials.

Natural history studies: animal models. A natural TB infection
animal model offers the potential to address several difficult ques-
tions about the transmissibility of M. tuberculosis as well as mech-
anisms of resistance to infection and/or progression to active dis-
ease. The guinea pig is highly and uniformly susceptible to M.
tuberculosis infection and disease under laboratory conditions of
infection (89, 90). In contrast, under natural exposure conditions,
guinea pigs demonstrate a range of susceptibility that is similar to
that of humans. Riley et al. designed the original natural exposure
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experiments in the 1950s with shunting of air from hospital rooms
of humans with pulmonary TB into separate rooms where guinea
pigs were housed (91-93). Guinea pigs had serial TST skin tests
during the experiment with necropsy at the conclusion and cul-
turing tissue for viable M. tuberculosis. Some infected animals with
positive TSTs reverted their skin test and had no evidence of active
TB disease at necropsy (91, 92). These data suggested that rever-
sion was associated with sterilizing immunity. An alternative in-
terpretation of these data is that the initial TST conversion was due
to exposure to dead bacilli that did not produce a true infection.
Subsequent studies assessed this possibility by exposing the ward
air to UV light and demonstrating that killed M. tuberculosis did
not induce conversion to a positive TST (94).

More recently, Dharmadhikari et al. extended these studies
and examined transmissibility and disease progression in guinea
pigs naturally exposed to multidrug-resistant (MDR) M. tubercu-
losis (93). Serial TST skin testing was done at baseline and
throughout 20 weeks of exposure to assess whether TST magni-
tude and kinetics were associated with disease progression.
Among 362 guinea pigs exposed for 4 months to patients with
MDR TB, 75% of animals had positive TSTs (>6 mm) (93). In-
terestingly, only 12% of the animals with a positive TST had active
TB when assessed at necropsy by histology and culture of lung,
spleen, and lymph node. To determine whether early or late TST
conversions were predictive of different outcomes, animals with
large TSTs (>14 mm) at 20 weeks were analyzed further. Those
with early conversions had lower disease severity than those with
later conversions. To further assess the kinetics of TST conversion,
those with positive tests in the 6- to 13-mm range were analyzed.
Twenty-two percent (n = 86) of these animals had a reversion of
their test to negative, and only 2/86 had active disease. In contrast,
47% of animals with nonreverting skin tests had active disease.
Even after steroid administration to a subset of animals, there was
no evidence of active disease in the animals exhibiting TST rever-
sion. A potential confounding variable is that serial skin testing
could induce or boost cell-mediated immunity. Although this is
possible, other investigators reported only rare false-positive con-
versions in control animals without exposure to M. tuberculosis
that received serial skin tests (95). Together, these experiments
demonstrate that natural exposure causes a more diverse set of
outcomes (resistance, reversion, and range of disease severity)
than laboratory conditions. Some of these differences may be due
to the metabolic state of the bacillus or the magnitude of the ex-
posure. In addition, these experiments suggest that a guinea pig
can completely clear M. tuberculosis infection and that reversion of
a TST was correlated with this possible sterilizing immune re-
sponse. These studies are promising and provide an impetus to
understand whether immune responses that can clear an estab-
lished infection exist in humans. In addition, the difference in
outcomes between natural and laboratory-controlled exposure
suggests that vaccine trials in animal models may need to incor-
porate such conditions in their design to avoid artifacts of labora-
tory testing conditions.

Natural history studies: humans with resistance to TB infec-
tion. Are any humans resistant to TB infection? Although many
individuals become infected with M. tuberculosis after sustained
exposure, only a small fraction resist infection as demonstrated by
persistently negative TSTs or IFN-vy release assays (IGRAs) (96,
97). These individuals may have an innate macrophage response
to M. tuberculosis that resists initial infection or rapidly clears the
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bacillus before a T-cell response develops. If such innate resistance
did not exist, one might expect LTBI rates in regions where TB is
endemic to approach 100%. Resistance is likely a threshold phe-
nomenon that is related to the degree of exposure. Surprisingly,
approximately 5 to 10% of individuals remain tuberculin skin test
negative despite sustained exposure to an infectious TB case (96).
Addressing this question experimentally requires a longitudinal
study design with documented events of exposure to individuals
with pulmonary TB, ideally with high bacillary loads in a house-
hold where there is extensive exposure with contacts. Since 1995,
the National Institute of Allergy and Infectious Disease (NIAID)-
supported Tuberculosis Research Unit (TBRU) conducted a
household contact (HHC) study in Kampala, Uganda (98-105).
Index cases were identified at the Uganda National Tuberculosis
and Leprosy Program treatment center at Old Mulago Hospital in
Kampala, Uganda. Participants were enrolled if they were 18 years
or older, had sputum smear-positive and/or culture-positive pul-
monary TB, and had at least one HHC living with them. Individ-
uals whose TSTs were negative at all follow-up visits were consid-
ered to be resisters (RSTR), and individuals who developed a
positive TST during study follow-up were considered TST con-
verters (96, 97). All of the individuals in the HHC study live with
the index case and have many risk factors for close proximity to
the index case. Extensive epidemiological analysis has not revealed
any exposure variables that distinguish those who convert their
TST from those who do not. A potential confounder of the study
design is that M. tuberculosis-specific T cells may be present in
other tissues (e.g., skin or lung) and not detected by skin testing or
peripheral blood assays. A whole-genome linkage scan and candi-
date gene study was performed to identify human genetic risk
factors for resistance to TB infection (RSTR) and active TB dis-
ease. In the genome scan, regions linked to active TB differed from
those linked to RSTR. Linkage results for RSTR included a chro-
mosome 5 region that has since been replicated by an independent
study (106). Although not conclusive, these data suggest that some
humans are naturally resistant to TB infection and that genetic
factors may regulate this difference. Identification of the immu-
nogenetic factors associated with resistance may lead to novel
strategies for immunomodulatory therapy. These strategies might
include the use of small-molecule drugs that target host macro-
phage pathways or vaccines that induce T-cell responses which
activate macrophages to kill M. tuberculosis (107).

Natural history studies in humans with preexisting TB infec-
tion: is there evidence of protection? Is there evidence of acquired
immunity to TB from natural history studies? This question has
been partially addressed by studies in regions of high endemicity
that compare active TB incidence rates in those with or without
TB infection. A high-endemicity setting is required to assess this
question since there is an assumption of ongoing exposure to M.
tuberculosis during the study period. The classic study to address
this question was performed by Johannes Heimbeck in Norway,
who administered TSTs to nursing students who entered school
between 1924 and 1936 and worked in a hospital with a large
number of TB patients (108). Among 1,453 students, 45.3% were
TST positive at study entry and 54.7% were negative. Within the
TST-negative group who did not receive BCG vaccination (n =
284), 34.2% developed active TB disease and 10 died. In contrast,
3.3% (n = 22) of the TST-positive nurses developed disease, with
no deaths. Multiple studies subsequently examined this question
with prospective cohort designs in the prechemotherapy era. In a
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meta-analysis of 18 studies with an aggregate sample size of 19,886
individuals, Andrews et al. estimated that individuals with latent
tuberculosis had a 79% lower risk of developing active TB disease
after reinfection than uninfected individuals (109). In a more re-
cent study in a region in South Africa with a high TB burden, 6,363
adolescents 12 to 18 years old were followed for 2 years with serial
TST and QuantiFERON testing (QFT) (110, 111). Among those
who had a positive baseline QFT, the incidence rate was 0.64 active
TB cases/100 person years. In contrast, the rate among those who
converted during the 2-year observation period was 1.46 cases/100
person years. In another recent study of 764 households in Peru in
an area of high BCG vaccination rates, modeling of cross-sectional
data estimated that previous infection reduced the risk of reinfec-
tion by 35% compared to that for uninfected individuals (112).
Together, these studies suggest that individuals with established
M. tuberculosis infection have decreased susceptibility to active TB
disease after reinfection in comparison to those who are unin-
fected. These data are consistent with a concept that humans can
acquire immunity to TB from natural exposure.

Natural history studies: spontaneous human reverters. If hu-
mans could eradicate M. tuberculosis after infection, it would sup-
port the rationale that such protective immunity could be induced
in a vaccine. Although this immunity would not prevent infection,
it could possibly eliminate M. tuberculosis in the early stages before
it establishes a chronic infection. Is there evidence from natural
history studies that such “natural immunity” exists? Although the
majority of individuals with a positive TST will remain positive for
their lifetime, the phenomenon of reversion has been recognized
for over a century (113). Spontaneous reversion (in the absence of
INH treatment) may represent a successful host response, and
these individuals can be studied to identify correlates of protective
immunity. Alternatively, reverters may have suppressed or defec-
tive immune responses and still harbor active bacilli that are fully
capable of causing active TB disease. Does any epidemiological
evidence favor one of these models? Early studies demonstrated
that many individuals spontaneously revert from a positive to a
negative TST. This was first published in 1913 by Gelien and Ham-
man in their study of 1,000 individuals in Baltimore, MD, who
received a TST in ~1908 and a repeat test 1 to 3 years later (114)
(Table 2). Nearly 50% of those subjects reverted their positive test.
Many additional studies had similar findings over the next 100
years and explored factors associated with reversion. Consistent
findings across multiple studies suggest that reversion is more
common in children (115-117), less common in those with a
higher-magnitude initial conversion (113, 118), and possibly
more common in females (115, 119). Rates of spontaneous rever-
sion may depend on several variables, including BCG vaccination,
exposure to nontuberculous mycobacteria (NTM), a booster phe-
nomenon from prior TSTs, duration of positivity before rever-
sion, age, and magnitude of the conversion and reversion (118,
120). To control for some of these variables, recent studies have
used M. tuberculosis antigen-specific tests and found high rates of
reversion for recent converters in analyses that were adjusted for
these variables (110, 117, 119). Hill et al. used a CFP10/ESAT-6-
based enzyme-linked immunosorbent spot (ELISPOT) assay in
the Gambia and reported reversion rates of up to 36% (117). Us-
ing the IGRA QuantiFERON-TB Gold (QFT-TB Gold), Shah et al.
found a reverter rate of 15% in children in Soweto, South Africa,
and Machingaidze et al. found a rate of 9.2% in Worcester, South
Africa (110, 119).
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TABLE 2 Spontaneous reverters”
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Age (yr), time

Study Location or interval % Reversion,
start yr population N/n® between tests test used* Comments Reference
1913 Baltimore, MD 1,000/2 All, 1-3 yr 50, PPD Minimal exptl details 114
1924 Philadelphia, PA 3,919/2,490 All, 6 mo 11.1, PPD Reversion rate inversely correlated with 116
initial conversion magnitude; reversion
more common in young than in adults;
among 913 clinically active TB patients,
none reverted; among 276 reverters, 11
had CXR evidence of healed, calcified TB
1935 Native Americans 3,025/ 0-20, not 7.8, PPD No relationship of reversion to mortality 203
in USA stated (but only 10 died)
1959 Los Angeles, CA 160/121 <6, 3-12 mo 56, PPD Reversion rate inversely correlated with 113
initial conversion magnitude; majority
not treated with INH; higher reversion
rate if CXR with inactive lesions (10/20);
no reversion if CXR had active lesion
(n=14)
1980 Malawi 6,991/1,889 All, 5 yr 3-15, PPD Higher reversion in age <5 and in females 115
1982 San Francisco, CA 495/258 Adults mean 24.8, PPD 98% of reverters had 0 mm at second test 204
age 76, 3 yr
<1990 San Francisco, CA 380/380 31-105, 1 yr 26, PPD 70% complete reversion; 60% reversion in 118
age >90; lower reversion rate if initial
test >15 mm
<2006 The Gambia 558/313 >15,3-18 mo 8.9, PPD; 32.7, Reversion rate inversely correlated with age; 117
ELISPOT higher reversion for ELISPOT than for
PPD
2006 Soweto, South 270/62 3-9, 6 mo 15, QFT-GIT Higher reversion in females; lower reversion 119
Africa if baseline positive PPD
2005 Worcester, South 6,363/2,613 12-18, 24 mo 9.2, QFT-GIT 110
Africa

“ The table excludes studies that use isoniazid or other chemotherapy (except for that by Adams et al. [113]).
b N is the total number in the study (positive and negative results), and  is the number of individuals with a positive test who were examined for reversion with a second test.

¢ Percent reversion among those with a positive test.

Several reasonable concerns have been raised regarding the in-
terpretation of the significance of reversion. First, some reversions
likely represent borderline positive results with fluctuations
slightly above and below the positivity threshold. Although this is
the case for some reverters, multiple studies have demonstrated
that the majority of reverters have large and often complete rever-
sions, with a second test of 0-mm induration after an initial con-
version magnitude of 10 to 15 mm. Second, reverters may have
transient exposure to nontuberculous mycobacteria rather than
true infection with M. tuberculosis. More recently, this concern has
been fully addressed with three studies that used IGRAs (QFT-TB
Gold In-Tube [QFT-GIT] or ELISPOT) and found reversion rates
0f8.9t0 15% (110,117, 119). Third, reversions are a phenomenon
found only in low-incidence areas and may represent false-posi-
tive tests and/or tests compounded by laboratory errors. This con-
cern is unlikely for multiple reasons, including that the majority of
the studies are from countries that currently have high TB ende-
micity or those that previously had high rates (e.g., the United
States in 1900 to 1950). The consistency, magnitude, and fre-
quency of the reverter phenomenon over multiple studies suggest
a durable finding.

What does reversion represent immunologically? The rever-
sion of M. tuberculosis-specific immune responses could be caused
by immune suppression, egress of M. tuberculosis-specific T cells
from the blood, clearance of TB infection, or lowering of the M.
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tuberculosis bacillary load. Although the TST conversion and re-
version event likely includes CD4™ T-cell IFN-v, there has been
no systematic study of the details of the cellular source of IFN-vy or
the breadth of other immunological responses and whether they
also revert. For example, other immunological responses that may
revert include other cytokines (e.g., IL-2, TNF, and other T-cell
cytokines), different T-cell subsets (e.g., CD4" versus CD8™ ver-
sus CD1), different CD4* T-cell phenotypes (e.g., TH1 versus
TH2 versus TH17 and central versus effector memory), and re-
sponses to other M. tuberculosis antigens (beyond CFP10, ESAT-6,
and TB7.7 in the IGRA). Reversion of either global or restricted M.
tuberculosis-specific immune responses could represent immuno-
logically useful signals to dissect protective immune responses.
Do reverters have a lower incidence of TB disease than convert-
ers? The most comprehensive assessment of this question was per-
formed by Arthur Dahlstrom with an HHC study of TB index
cases in Philadelphia in the 1920s (116). A total of 3,919 individ-
uals from 513 households were followed for at least 5 years with
TSTs, chest X rays (CXRs), and clinical assessments. Among 2,828
individuals for whom at least 2 TSTs were performed, 276 (11.1%)
reverted their test to negative (<5 mm). Among the 913 (23.3%)
of individuals with active TB in this study, none were TST revert-
ers. Among 274 reverters with CXRs obtained at the time of their
reversion, 2 had evidence of active childhood TB (presumably
without symptoms), while the remainder showed either no TB
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(n = 256) or inactive TB (n = 16). Together, these data suggest
that reverters have a minimal risk of developing active TB over 5
years (0.72% versus 23.3% of the entire cohort). In addition, the
same study as well as others demonstrated that some reverters
develop evidence of substantial TB disease that subsequently heals
with calcified granulomas (113, 116). Together, these studies sup-
port the concept that reverters are individuals who possess pro-
tective immune responses to M. tuberculosis that could be immu-
nologically interrogated to discover correlates of protective
immunity. To our knowledge, such studies have not yet been per-
formed. Although suggestive, these studies were performed with-
out current standards of study design and statistical analysis, and
interpretation of some of the data is uncertain. Repeating a longi-
tudinal study of reversion and its clinical outcomes along with
immunological interrogation of the response is needed to deter-
mine the significance of reversion.

Lessons from BCG

Does BCG provide sterilizing immunity? What data are available
from animal and human studies to address this question?

BCG animal studies. Since BCG was first developed, its effects
as a vaccine have been investigated in countless experiments in
different animals from rodents to rudiments to primates, each
with intrinsic limitations and differences. Generally, the majority
of these studies employed aerosol routes to deliver M. tuberculosis
challenge doses that are as low as possible and yet still ensure
uniform infection and disease outcome for all animals. Thus, in-
fection doses in experimental animal studies tend to be signifi-
cantly higher (50 to 3,000 CFU per animal, commonly 10 to 20 for
guinea pigs and 100 for mice) than the relatively few bacilli
thought to be transmitted during natural exposure (though the
precise number has never been measured) (91, 121-123). In ad-
dition, the bacillus is prepared under laboratory conditions with a
metabolic state and physical conditions (sputum versus broth cul-
ture) that likely differ from those in natural transmission settings
(93). In this setting, BCG does not promote sterile clearance of M.
tuberculosis but rather controls M. tuberculosis replication to dif-
ferent degrees. In the best-studied murine, macaque, guinea pig,
and rabbit models, BCG recall responses have been shown to ar-
rest M. tuberculosis growth several days earlier than in primary
infection (89, 90, 124-127). Consequently, bacterial burdens and
disease severity are reduced and time to death is increased.

(i) Low- versus high-dose challenge models. Does BCG pro-
vide greater immunity in very-low-dose challenge models in com-
parison to those with high doses? Early BCG studies more com-
monly employed lower challenge doses as a means to more closely
mimic natural transmission. However, infection is more difficult
to verify with lower M. tuberculosis doses, and they are rarely uti-
lized in current studies. The sensitivity of different animals to M.
tuberculosis also varies. For example, commercial rabbits are rela-
tively resistant to M. tuberculosis, requiring approximately 300 to
3,000 inhaled bacilli to produce 1 primary pulmonary lesion, and
are therefore less well suited for low-dose infection models (89).
Another constraint for small-animal studies utilizing aerosol in-
fection chambers is the potential for partial infection of a group of
animals, as has been recently described for aerosol chamber infec-
tion of mice at doses lower than 10 CFU per infected animal (122).
Guinea pigs are very susceptible to M. tuberculosis, generating
roughly 1 primary pulmonary lesion per inhaled bacillus, and thus
low-dose challenges may be delivered via infection chambers. Us-
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ingan aerosol challenge of <10 CFU per animal, BCG vaccination
has been shown to restrict M. tuberculosis growth in the primary
pulmonary lesions of guinea pigs (126, 128). Vaccinated groups
contained fewer primary lesions and no secondary lesions. In non-
vaccinated groups, numerous secondary pulmonary lesions, as
well as extrapulmonary lesions, developed as a result of M. tuber-
culosis spreading via the bloodstream, indicating that all animals
were infected. In another low-challenge-dose guinea pig study,
aerosol delivery of BCG was associated with a profound reduction
in bacterial burden that was greater than that observed at higher
challenge doses (129). Together, these studies suggest that BCG
vaccination prevented more primary lesions than in controls, but
it was not 100% effective.

(ii) NHP studies. Macaques are also relatively susceptible to M.
tuberculosis and thus amenable to low challenge doses. Aerosol
infection devices have been used to infect rhesus macaques with
doses on the order of 10 to 15 CFU (130, 131). TST reactivity and
evidence of disease via radiographic, pathological, and tissue sam-
ple culture techniques were used to evaluate M. tuberculosis infec-
tion outcome in these studies. Using these methods, 9 out of 10
monkeys receiving an aerosol or intravenous BCG vaccination
were protected, exhibiting no evidence of M. tuberculosis infection
at 12 weeks postchallenge (131). Similar findings were observed
for a group receiving intravenous BCG (8 out of 10 were pro-
tected). However, the fact that 2 of 10 monkeys in the control
unvaccinated group lacked evidence of infection suggests hetero-
geneity in infection. Alternatively, there was heterogeneity in dis-
ease outcome as has been described for cynomolgus macaques
(132, 133). Intrabronchial or intratracheal instillation has also
been used to more directly deliver doses ranging as low as 10 to 25
CFU (132, 134, 135). However, vaccination has thus far not been
investigated using these routes together with very low M. tubercu-
losis challenge doses. The BCG studies in nonhuman primates
(NHPs) conducted thus far have utilized high challenge doses
(250 to 3,000 CFU per animal), and in these studies, reduction in
bacterial loads and hematogenous spread, but no evidence of ster-
ilizing immunity, have been observed (136-138). Although the
pathological, radiographic, and sample culturing techniques do
not definitively demonstrate M. tuberculosis clearance, the high
inocula utilized are a limitation for interpreting the potential effi-
cacy of BCG in preventing primary infection. Nonetheless, a vari-
ety of animal models indicate that the protective effects of BCG
may be greater when very low challenge doses are used.

(iii) Ruminant studies: M. bovis, cattle, and deer. BCG vacci-
nation has also been evaluated as a means to protect against M.
bovis, the etiological agent of tuberculosis in domestic livestock
and wildlife animal reservoirs. Similar to findings in humans, pro-
tective efficacies for BCG against animal tuberculosis have been
variable, ranging from no protection to significant protection
from disease (139-143).

The variable results from experimental M. bovis infection of
cattle have led to similar challenges and technical constraints as
those described above for M. tuberculosis. Although low M. bovis
challenge doses would better mimic natural transmission, to en-
sure uniform outcome, typical doses involve 2 X 10’ to 5 X 10’
CFU given intratracheally. In the majority of studies, protection
has been characterized as reductions in M. bovis-induced pathol-
ogy and bacterial loads rather than prevention or clearance of
infection (144, 145). Although there is variability within groups,
there are reports suggesting that some BCG-vaccinated cattle
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lacked evidence of disease, even in the case of high-dose M. bovis
challenge (146, 147). In studies that reported pathology and cul-
ture results for individual cattle, there is evidence that some BCG-
vaccinated cattle lacked macroscopic lesions and also had no ba-
cilli cultured from lung or lymph node samples (148, 149). In a
recent study of a BCG-containing prime/boost regimen, adminis-
tering a viral vector boost vaccine improved vaccination outcome
and resulted in greater numbers (60%) of cattle that lacked evi-
dence of disease in terms of visible lesions or culturable bacilli
(150).

Deer represent one of the wildlife species that serve as a reser-
voir for M. bovis transmission to livestock. In a deer BCG model,
200 to 500 CFU of M. bovis inoculated into a tonsular crypt was
found to result in infection of >90% of deer and to induce pathol-
ogy similar to that of natural infection (144). Importantly, in ad-
dition to protection against development of disease, the investiga-
tors evaluated BCG’s ability to protect against infection. In these
studies, low doses of BCG and boosting were necessary for pre-
venting infection in all animals, while suboptimal regimens
achieved protection from disease only (151, 152). While it remains
possible that absolute sterile clearance was not achieved, the ab-
sence of culturable bacilli from individual and pooled lymph
nodes in 5 out of 5 animals is highly suggestive of clearance (151).

Even more compelling evidence of sterile clearance was re-
ported in a cattle study in which M. bovis-specific responses in
peripheral blood were evaluated along with pathology and cultur-
ing (148). Two vaccinated and challenged cattle in this study
lacked evidence of disease and also exhibited a transient ESAT-6-
specific IFN-vy peripheral blood response several weeks postchal-
lenge (148). These data are reminiscent of the IGRA response
reversion in humans discussed above and could indicate that
BCG-induced responses enabled these cattle to clear their M. bovis
infection.

Does BCG provide sterile clearance of M. bovis in natural-ex-
posure settings? Several field studies have observed significant ef-
ficacy for BCG in reducing incidence of bovine TB (143, 153, 154).
Field studies in Malawi showed that a single subcutaneous BCG
dose provided significant protection against lesions (141, 143).
More recently, two field studies in Mexico and Ethiopia were con-
ducted in which BCG efficacy was estimated at around 60% (153,
154). These studies employed gamma interferon release assays
using ESAT-6 and CFP10 stimulation of whole blood and thus
were able to distinguish partially protected from fully protected
cattle.

Finally, a field study among badgers, another wildlife reservoir
for M. bovis, found that BCG vaccination protected against infec-
tion (155). In this study, the estimated reduction in infection risk
ranged from 54% to 76% depending on the diagnostic test used. In
addition, a reduced risk of infection was also observed for unvac-
cinated badger pups, suggesting a herd immunity effect. Taken
together, these M. bovis studies demonstrate that BCG protects
against development of lesions and other disease parameters. In a
few reports there are also indications that BCG-induced immu-
nity may lead to bacillary clearance, particularly for natural-trans-
mission settings (153, 154).

(iv) Is there evidence that BCG can promote M. tuberculosis
clearance in animal models? Although there are suggestive datain
multiple models that it may be possible, definitive evidence of
vaccine-induced M. tuberculosis clearance is lacking, mostly be-
cause of the technical challenges involved in demonstrating infec-
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tion status. Future studies could solve some of these study design
limitations. For example, macaque studies utilizing very-low-dose
challenges via aerosol or intrabroncheal instillation, similar to
those of Barclay et al. (131), could be conducted in conjunction
with early bronchoalveolar lavage sampling for culture as well as
IGRAs to verify infection and to assess the possibility of clearance
over time. In addition, a recently described ultra-low-dose chal-
lenge mouse model could be used to assess the protective effects of
vaccination when mice are infected with <10 bacilli (122). Al-
though such low doses result in partial infection, the use of mice,
which are relatively low in cost, would permit the necessary in-
crease in animals used per experiment. Natural-exposure studies
should also be considered, for example, using the guinea pig clinic
ward air exposure approach to evaluate the potential for vaccines
to promote sterile clearance (91, 93). Early time points to assess
infection rates and extended sampling performed in conjunction
with pathogen-specific immune responses (i.e., IGRA) would fur-
ther strengthen the data. Although such animal models have po-
tential to be used as a screening step for vaccine selection, animal
models have intrinsic limitations due to species-specific immune
responses that differ from those of humans e.g., potentially differ-
ent macrophage mechanisms of M. tuberculosis killing in humans
(antimicrobial peptides) versus mice (nitric oxide).

BCG human studies. In addition to animal data, there are hu-
man studies that suggest a possible protective effect of BCG. Prior
to the development of IGRAs, this question was confounded by
cross-reactivity between purified protein derivative (PPD) and
BCG due to common antigens. The antigens used in the T-SPOT
ELISPOT assay (CFP10/ESAT-6) and QFT-TB Gold In-Tube as-
say (CFP10/ESAT-6/TB7.7) are not present in BCG and thus can
be used to assess whether BCG vaccination is associated with pro-
tection from TB infection. A recent meta-analysis of 14 retrospec-
tive case-control studies suggests that BCG is associated with pro-
tection from M. tuberculosis infection (n = 3,855; overall risk
ratio, 0.81; 95% confidence interval [CI], 0.71 to 0.92) (156). Four
additional studies were not included in the meta-analysis. Three of
those four studies also showed a protective effect (Table 3) (117,
157, 158). One limitation of these studies is that they were retro-
spective and most relied on the presence of a BCG scar to docu-
ment vaccination status (except the study from Greenland, which
had birth records of BCG vaccination). Several studies that dem-
onstrated a protective association were performed in countries
with low or medium incidence (United Kingdom, Europe, Tur-
key, and Greenland). These data suggest that BCG protection
could be dependent on the level of exposure, with protection wan-
ing in high-exposure settings. Differences in efficacy that correlate
with geography also suggest possible effects from nontuberculous
mycobacteria (NTM) which could potentially modulate vaccine
responses through heterologous priming from cross-reactive my-
cobacterial antigens. NTM exposures can vary substantially in dif-
ferent geographic regions, which might explain the disparate out-
comes of BCG vaccination in large trials conducted in northern
latitudes (e.g., British Medical Research Council trials with 80%
efficacy) and equatorial regions (Indian Council of Medical Re-
search Trial in India and Karonga Prevention Trial in Malawi with
0% efficacy) (159-161). Although some immunological data sup-
port this hypothesis, the nature, magnitude, and mechanism of
this potential modulatory effect are unknown (162, 163). These
issues could affect the choice of where to conduct a prevention-
of-infection trial. Although these studies are not randomized, pro-
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TABLE 3 BCG and protection from TB infection”

Odds ratio

(95% CI) for
Study yr Location n Age BCG vs IGRA Comments Reference
2002 Turkey 979 <16 yr 0.60 (0.43-0.83) ELISPOT; household contact design, 7 clinics in Istanbul 205
2002-2004 The Gambia 718 6 mo-14 yr 0.80 (0.5-1.2) ELISPOT; household contact design 206
<2007 The Gambia 207 >15yr 0.50 (0.20-1.0) ELISPOT; household contact design 117°
2007-2008 Australia 524 5 mo-16 yr 1.80 (0.80-4.0) ELISPOT; refugees from Africa and Burma 207"
2006-2009 Europe 1,128 <16 yr 0.41 (0.30-0.55) QFT-GIT; pTB-NET multicenter, multicountry study 157%

0.41 (0.25-0.66) ELISPOT; pTB-NET multicenter, multicountry study
1982-2006 Greenland 953 5-30 yr 0.52(0.32-0.85) Assessed TB infection before and after change in 158°

nationwide BCG usage

@ Studies with n of >700 or not included in meta-analysis by Roy et al. (156).
b Study not included in meta-analysis by Roy et al. (156).

spective, consistent, or conclusive, they do suggest that BCG may
protect against TB infection. Based on the animal and human
studies published to date, an important next step for the field
would be to conduct a randomized clinical trial of BCG vaccina-
tion for prevention of TB infection.

Lessons from Mathematical Modeling

What other factors influence the plausibility of a preinfection vac-
cination strategy for TB? If a vaccine did reduce the M. tuberculosis
acquisition risk, would this translate to observed efficacy in a clin-
ical trial conducted in a high-burden setting? Current models sug-
gest that a neonatal preexposure vaccine could reduce TB disease
incidence rates by 39% from 2015 to 2050 (164). However, these
models have not assessed the impact of a vaccine that prevents
infection. To address this question, we used mathematical mod-
eling to explore how different M. tuberculosis exposure/transmis-
sion parameters could affect the likelihood of infection and,
subsequently, whether a vaccine’s apparent efficacy is readily ob-
served or masked.

There is little quantitative information known about the inten-
sity (number of exposures over time) and magnitude (number of
bacilli per exposure) of exposure to M. tuberculosis and how vari-
ations in these are related to risk for infection. Suppose that prior
vaccination decreases the probability of a single viable organism
(or a single “droplet micronucleus”) deposited on the lung alveo-
lar surface establishing a persistent infection. How might varia-
tions in the intensity (numbers of exposure events) and magni-
tude (numbers of bacilli deposited per exposure event) of
exposure affect the efficacy to prevent infection induced by a vac-
cine? Because these early events in the process of exposure and
establishment of infection are not observable, one can only ad-
dress these questions by asking “what if” questions with answers
provided by mathematical modeling. The goal of this section is to
posit a simple model for intensity and magnitude of exposure to
M. tuberculosis and to use that model to explore the levels of effi-
cacy that might be expected from a vaccine that reduces the prob-
ability of a single bacillus from establishing a persistent infection.

Model for intensity and magnitude of M. tuberculosis expo-
sure. We start by assuming that M represents the number of ex-
posure events over a given year of follow-up. Note that we implic-
itly assume a model of discrete exposure events such as might arise
via social contacts rather than a model of continuous exposure
such as might arise via constant contact with an infected caregiver.
We assume that the distribution of M has expected value ,, and
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variance 0°M.,,. The parameter ., is used as an index of the
intensity of exposure over time, and o*M is an index of variability
over individuals in exposure intensity. We specifically use an over-
dispersed Poisson (negative binomial) distribution for M to sim-
plify our formal calculations.

Now suppose that for a given exposure event, the number of
viable bacilli (or droplet micronuclei) deposited on the lung alve-
olar surface is represented by X. We assume that the distribution
of X is also negative binomial with expected value p.X and variance
0° Xy and that the magnitudes of exposure realized over separate
exposure events are independent. The parameter p.X is used as an
index of the magnitude of exposure over exposure events, and *N
is an index of variability in magnitude of exposure events over
time. Note that X can more generally be thought of as a surrogate
measure of the infectious potential for a given exposure (e.g., due
to M. tuberculosis strain variation).

The model linking exposure to infection is completed by as-
suming that given an exposure event of magnitude X, the proba-
bility of a persistent M. tuberculosis infection is given by the func-
tion P(X:T), where T is a parameter that controls the absolute
probability of infection. For fixed values of 7, the function P(x;7)
should take value zero when x = 0 (no exposure = no chance of
infection), and if x1 =< x2 then P(x1;1) = P(x2;7) (an equal or
greater magnitude of exposure should not decrease the probability
of infection). The assumption of independent infection outcomes
over multiple exposure events then leads to a simple expression
for the probability of infection over a year follow-up period, given
by Pr(M. tuberculosis infection) = 1 — E{E[1 — P(X;7)]}", where
Erepresents expectations taken over the assumed distributions for
X and M. One specific form for P(X:7) is given by 1 — (1 — 1),
which is motivated by assuming that each bacillus has an indepen-
dent probability T of forming a persistent infection at the site.
Although this functional form is motivated by a specific biological
model, it provides a broad range of shapes for P(X;7) (Fig. 2A) and
is reasonable to consider on that basis even without reference to
the specific biological model. The impact of innate immunity, host
genetics, vitamin D levels, or other factors that may influence the
probability of an infectious quantum establishing a persistent fo-
cus of infection following deposition in the lung is contained
within the assumptions of the model as an aggregate host risk
factor. A more nuanced incorporation of such factors into the
model is not feasible with currently available data.

In summary, our model linking exposure intensity and magni-
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FIG 2 Mathematical modeling of effects of a preexposure TB vaccine. A family
of models, indexed by a parameter T, which translates an exposure event with
exposure magnitude X to a probability that the exposure will lead to a persis-
tent M. tuberculosis infection (7 controls the absolute probability of infection),
is shown. The average of P(X;t) over the assumed distribution of X gives the
unconditional probability of persistent M. tuberculosis infection for a single
exposure. Terms are as follows. M is the number of discrete exposure events
over a year (intensity of exposure). Assume that M varies over individuals but
there is an average number of exposure events for a given population of indi-
viduals and that average (on log scale) is the index of intensity of exposure for
that population. X is the infectious potential of a single exposure event (mag-
nitude of exposure). The simplest interpretation of the infectious potential X is
as the number of discrete infectious units (e.g., bacilli) deposited on the lung
alveolar surface at a single exposure event. Even though X can be interpreted
more generally/abstractly, the narrow interpretation of X is the number of
infectious units per exposure event. Assume that X varies over multiple expo-
sure events within individuals as well as between individuals but there is an
average number for a given population of individuals over time and that aver-
age (on log scale) is the index of magnitude of exposure for that population.
is a parameter that links exposure magnitude X to probability of infection
through the function P(X;t). For the specific function P(X; 1) = 1 — (1 — )%,
7 is the probability of infection from a single unit exposure (e.g., an exposure
event with X = 1). (A) Probability of persistent M. tuberculosis infection in
relation to different exposure magnitudes. The graph shows the probability of
persistent infection for a given exposure magnitude (number of bacilli per
exposure event). The magnitude of exposure is plotted on the x axis, where X
may be interpreted as the number of discrete infectious units deposited in the
lung for an individual exposure event. The y axis represents the index of
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tude to infection posits M exposures per year with exposure inten-
sities X, where the probability of infection from a given exposure
depends on the intensity of that exposure X together with the
parameter 7, which can be interpreted as the probability of infec-
tion given exposure to a single bacillus.

Suppose that the annual rate of M. tuberculosis infection in a
given high-burden population is approximately 5%. Thus, for a
given degree of intensity and magnitude of exposure, one can
compute what the value of T must be in order to match that known
rate of infection. Simply put, if exposure intensity and/or magni-
tude is much higher than the observed infection rates, then the
probability of infection per exposure to a single bacillus must be
quite small. Conversely, if exposure is low relative to observed
infection rates, almost every exposure must lead to infection.
There is a threshold or exposure below which it is impossible to
achieve a given infection rate even if exposure leads to infection
with certainty. The result of this computation calibrates the model
to a given annual infection rate given the assumed degree of expo-
sure. Figure 2B displays contours of the value of 7 calibrated to an
annual infection rate of 5% across different combinations of in-
tensity and magnitude of exposure (indexed values of py and p,,
on the natural log scale). This figure shows one region in blue for
which levels of exposure are too low to be consistent with an an-
nual infection rate of 5%. The boundary of this region corre-
sponds to the deterministic situation for which every exposure

infectiousness. Four different possible scenarios for probability of infection ()
are plotted. (B) Model for different probabilities of infection calibrated to an
annual infection rate of 5%. the contour plot shows the relationship between
exposure magnitude and intensity corresponding to an annual infection rate of
5%. The range of potential exposure magnitudes is plotted on the x axis (log
scale). The range of potential exposure intensities (number of exposure events)
is plotted on the y axis. The contour lines indicate potential values for the
probability of infection (7) for given expected exposure magnitudes and inten-
sities. The blue region represents values that are not consistent for a setting
with an observed population infection rate of 5%. (C) Model for vaccine effect
in which the probability of infection is reduced by 60%. The estimated effect of
a vaccine with 60% biological efficacy (reduces the probability of persistent
infection by 60%) is shown. Solid lines correspond to the scenarios depicted in
panel A. Dashed lines correspond to reduced probability of infection expected
for a vaccine with 60% efficacy, with arrows highlighting the amount of shift.
The graph suggests that for a low probability of infection (7), the vaccine effect
is reduced (arrow). In addition, at high probabilities of infection, the vaccine
effect is reduced at higher magnitudes of exposure. For lower probabilities of
infection, the vaccine effect persists across a wide range of exposure magni-
tudes. However, for higher probabilities of infection, the vaccine effect is ap-
parent only at lower exposure magnitudes and is almost completely attenuated
at higher exposure magnitudes. (D) Attenuation of vaccine efficacy for differ-
ent levels of magnitude and intensity of exposure. Contours of values for
vaccine efficacy (VE) plotted versus exposure intensity and magnitude are
given for a 60% reduction in the probability T (RR = 0.4). The contour plot
shows values for biological vaccine efficacy calibrated to an incidence of 5% per
year. This graph is a companion to panel B, in which the per-exposure prob-
ability of infection (7) is consistent with population infection rates of 5% per
year for certain levels of magnitude and exposure. The contour line numbers
indicate different potential population-level or observed vaccine efficacies as-
sociated with a vaccine with biological (per-exposure) efficacy of 60%. As in
panel B, the blue region indicates scenarios in which exposure is too low to be
consistent with an unvaccinated population infection rate of 5% per year. The
model suggests that observable population-level vaccine efficacy decreases as
exposure decreases and the per-exposure probability of infection concomi-
tantly increases. It also suggests that attenuation of vaccine efficacy is greater
for high-magnitude/low-intensity exposure profiles than for low-magnitude/
high-intensity profiles. Thus, all other things being equal, a vaccine would
perform better with more exposures of lower magnitude than with fewer ex-
posures of higher magnitude.
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results in a persistent M. tuberculosis infection (T = 1). Higher
levels of exposure correspond to the stochastic situation for which
each exposure does not inevitably result in persistent infection
(T<1).

Modeling observed VE. With the model calibrated to an annual
infection rate of 5%, we can then explore how a reduction in the
probability T by prior vaccination would translate into observed
vaccine efficacy (VE) and how variations in the intensity and mag-
nitude of exposure might affect that vaccine efficacy parameter.
We define the population-level vaccine efficacy as the percent re-
duction in the annual infection probability and compute it from
the expression given above using the values of 7 represented in Fig.
2A to calibrate the control group infection rate at 5% and using
values of 7 * RR to give the corresponding infection rate among
vaccinees, where RR is the relative reduction in the probability T
due to prior vaccination. One minus RR might be thought of as
“biological vaccine efficacy” at the level of a single exposing bacil-
lus. Examples of the assumed shift in the function P(X;t) due to
prior vaccination (with 60% reduction in the probability T) are
shown in Fig. 2C.

Contours of values for vaccine efficacy (VE) plotted versus
exposure intensity and magnitude are given in Fig. 2D for a 60%
reduction in the probability T (RR = 0.4). As expected, the value of
population-level vaccine efficacy is attenuated relative to the “bi-
ological vaccine efficacy.” The magnitude of attenuation is great-
est for lower levels of exposure at the threshold of a deterministic
link between each exposure event and infection. Thus, if exposure
is driving infection with little biological variation in risk subse-
quent to exposure (i.e., T =~ 1), then vaccine efficacy is more likely
to be significantly attenuated. In addition, the degree of attenua-
tion appears to be more sensitive to intensity rather than magni-
tude of exposure, with the combination of low intensity and high
magnitude resulting in vaccine efficacy of nearly one-half the
value of 7, while high intensity and low magnitude results in vac-
cine efficacy of only 22% less than the value of 7. The result of this
simple modeling exercise supports the idea that variation in expo-
sure would not dilute a biological effect of preexposure vaccina-
tion to a degree that population-level vaccine efficacy could not be
reliably detected in a clinical trial.

Summary of modeling exercise and conclusions. To recap in
simple prose, suppose a vaccine has a “biological efficacy” of re-
ducing the probability of infection per single unit exposure by
60%. The question is how much of a reduction in population rates
of infection such a vaccine would produce given the multiplicity of
exposures over time and variation in the magnitude of exposures
(over different exposure events). For a given intensity and magni-
tude of exposure in a population, we can model the rate of infec-
tion as a function of infection probability from a single unit expo-
sure. For a known infection rate in a specific population, e.g., 5%,
we can then calibrate the model to compute the infection proba-
bility per single unit exposure that corresponds to the population
infection rate under the specified intensity and magnitude of ex-
posure. If the exposure is at very high levels relative to the popu-
lation infection rate, then the infection probability per single unit
exposure must be small. If exposures are at very low levels, then
the infection probability per single unit exposure must be high,
and at some point it must approach one, where every exposure
results in infection. With this model calibrated to a population
infection rate in an unvaccinated population, we can compute the
population infection rate among vaccinees, assuming a given level
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of biological efficacy of the vaccine. From these population rates
we can compute observed vaccine efficacy and compare it to bio-
logical vaccine efficacy to see how much of that biological efficacy
is attenuated due to assumed exposure intensity and magnitude.
What we find is that biological vaccine efficacy decreases when
exposure magnitude and intensity decrease, with the lowest effi-
cacy when approaching the threshold at which the probability of
infection per single unit exposure approaches 1 (i.e., infection
occurs after every exposure). However, provided that there is
some stochasticity in infection per given exposure (i.e., exposure
does not inevitably result in infection), then attenuation of bio-
logical vaccine efficacy is not that great and estimates of the ob-
served vaccine efficacy in a vaccine trial may reasonably reflect the
levels of biological efficacy of the vaccine.

Previous modeling studies suggest that the protective effects of
a “leaky vaccine” are imperfect and are realized independently
over multiple exposures (165) The overall protective effect of the
vaccine declines, and measurable vaccine efficacy is much less
than that realized in a population of individuals with few expo-
sures over time. The contribution of the modeling work here is to
calibrate the model to a fixed population-level rate of infection
(e.g., 5%) and note that increased levels of exposure in this cali-
brated model naturally must be offset by a reduction in the abso-
lute probability of infection per exposure. The novel finding of
this work is that, once the model is calibrated, the attenuation of
protective effects of a vaccine is increased when there is less expo-
sure and the probability of infection per exposure is close to one.
Thus, the general concern about protective effects of a TB vaccine
being overwhelmed by multiple exposure events is perhaps mis-
placed. A second result of this modeling has to do with the relative
impact of heterogeneity in magnitude of exposure compared to
intensity of exposure over time. Again, fewer exposures that are
each of a very high magnitude will erode the protective effects of a
TB vaccine more than greater numbers of exposures that are each
at a low magnitude.

A PROGRAM FOR TB VACCINE DEVELOPMENT

Characteristics of Prevention-of-Infection and Prevention-
of-Disease Trials

Licensure of a TB vaccine will ultimately hinge on direct demon-
stration of the clinical benefit of vaccination and thus will require
randomized vaccine efficacy trials with primary clinical endpoints
of morbidity and mortality associated with active TB disease. Such
trials would be extraordinarily costly due to the large sample size
(tens of thousands of participants) and long duration of follow-up
(at least 5 years) needed to observe the required number of TB
disease endpoints within a trial cohort that is uninfected at enroll-
ment. The investment required to perform such an expensive trial
would be warranted if it was highly plausible that the vaccine
candidate was efficacious. However, the lack of clear immune cor-
relates of protection weakens the interpretation of immunogenic-
ity data regarding plausible vaccine efficacy, and animal challenge
models have generally been poor predictors of vaccine perfor-
mance in humans. Moreover, nonpediatric TB vaccine efficacy
trial designs that have been proposed (e.g., by Rustomjee etal.) are
powered almost exclusively on detecting effects among subco-
horts with postexposure vaccination (166). Thus, it is not surpris-
ing that pivotal trials of vaccine candidates employed in a preex-
posure vaccination strategy have not been mounted until now. A
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phase II proof-of-concept trial of prevention of TB infection re-
cently commenced among healthy, HIV-uninfected, previously
BCG-vaccinated adolescents near Cape Town, South Africa, an
area with a very high force of infection in this age group (Clinical
Trials.gov registration no. NCT02075203) (17, 23). This clinical
trial will test both BCG revaccination and the adjuvanted protein
vaccine H4-IC31 (AERAS-404), each compared to placebo, for
safety, immunogenicity, and protection against TB infection (n =
990) as measured by QFT-GIT conversion. Protection against in-
fection, measured by persistent QFT-GIT conversion without
subsequent reversion through 6 months after initial conversion,
will also be evaluated.

As described above in TB Epidemiology in High-Prevalence
Settings, the rate of TB infection among adolescents is much
higher than that of TB disease, so trials to evaluate preexposure
vaccines for reduction in the rate of TB infection would be much
smaller and shorter in duration than those with TB disease end-
points. The demonstration of a substantial reduction in the rate of
TB infection would certainly be an important marker of a vac-
cine’s biological activity and would provide a strong argument for
plausibility of vaccine efficacy to prevent TB disease. Moreover,
lasting protection from infection could potentially interrupt the
cycle of disease and transmission. However, TB infection should
not be considered a surrogate endpoint to replace TB disease in
pivotal trials as there is no guarantee that an infection prevented
by prior vaccination would not simply be in one of the 90% of
individuals who never progress from latent infection to active TB
disease. Thus, trials with a TB infection endpoint should best be
considered phase II trials that can deliver strong evidence for plau-
sibility of clinical vaccine effects and form the basis for gating
multiple vaccine candidates for advance to evaluation in pivotal
trials with disease efficacy endpoints. Such trials represent a ratio-
nal stepwise path leading to phase III trials of preexposure TB
vaccines.

Vaccine Design from Preclinical to Clinical Development

The present preclinical development is focusing on the use of the
older “Riley” model, in which it appears there may be transient
infection in guinea pigs exposed downstream of infected human
subjects (93). In addition, the present NHP model in use starting
in 2014 by Aeras delivers an inoculum 1 to 5 CFU, so prevention of
actual infection may become measurable and desirable, as this
model may better approximate true human infection. Initial work
by us (data not shown) has also resulted in controlled NHP-to-
NHP transmission via the aerosol route, which also holds promise
to evaluate vaccines for prevention of infection.

As these preclinical models for novel vaccine candidates im-
prove, selecting the actual vaccine to move into human preven-
tion-of-infection studies may become more evident. At present,
given a lack of convincing preclinical data, the decision to move
specific candidates forward has been made based on diversity,
(such as whole mycobacterial versus subunits in a trial comparing
BCG and the IC-31-adjuvanted fusion protein hybrid 4), some
level of animal data indicating a degree of “low take” based on
immunological responses (the IC-31-adjuvanted protein H56),
and knowledge based on antigens expressed during the early
stages of infection (“acute-phase antigens”). Studies are also on-
going to determine whether specific innate signatures may be as-
sociated with potential prevention of infection (for example, in
uninfected, highly exposed household contacts) and then to ex-
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amine what vaccine strategies might recapitulate the induction of
such gene signatures. The pipeline of available clinical approved
(phase I or higher) vaccine products has expanded considerably
over the past 10 years (Table 1) but mainly favors protein antigens.
One limitation of the current pipeline is the number of products
that contain the same antigens (which are mostly immunodomi-
nant) and/or similar adjuvants.

Longer-term strategies could include research areas beyond
these peptide-restricted T-cell responses. For example, lipid anti-
gens that are targets of CD1-restricted T cells could provide a
distinct immune response (167). Targeting humoral immune re-
sponses, a successful strategy for most of the currently available
vaccines, has not been a priority area of research in TB immunol-
ogy. Antibodies offer a specific conceptual advantage for a prein-
fection vaccine since they have the potential to prevent binding
and uptake of M. tuberculosis by a macrophage. Furthermore, sev-
eral lines of evidence suggest that M. tuberculosis-specific antibod-
ies may contribute protective responses to M. tuberculosis (168—
172). Although other studies suggest that B cells do not mediate
protection in murine TB models, further research is needed to
determine the role of B cells in human TB pathogenesis (173, 174).
Research in this area could lead to a broader immunological land-
scape that can be sampled and tested in vaccine products. Testing
of strategies that result in high levels of effector cells in the lungs,
such as the use of cytomegalovirus (CMV) vectors and aerosolized
viral vectors such as modified vaccinia virus Ankara (MVA) and
adenoviruses, is also under way. Although these strategies are
likely to result in an “aborted” infection, the present tools avail-
able to measure responses in human trials would not be able to
necessarily distinguish between a strategy that blocked infection of
the macrophage and one that resulted in a limited T-cell response
resulting in a negative TST or IGRA result. It is clear that focused
future studies such as those mentioned here are needed in the area
of animal models, vaccine design, and new methods to determine
at what stage “infection prevention” is actually occurring.

Infection endpoint trials that demonstrate vaccine efficacy will
provide opportunities to identify correlates of protection against
M. tuberculosis infection as well as mechanisms underlying such
protective immunity. In light of the current lack of correlates of
protection against TB disease and M. tuberculosis infection, stud-
ies of correlates should be an important and valuable component
of infection endpoint trial design. The smaller sample size relative
to that for TB disease endpoint efficacy trials may allow collection
of comprehensive specimen sets at more follow-up time points.
Further, frequent IGRA testing during follow-up would allow
early detection of new M. tuberculosis infections, facilitating stud-
ies of the poorly understood biology underlying acute M. tubercu-
losis infection of humans.

Clinical Trial Design, Endpoint Definitions, and Issues

A principal challenge in the design of an infection endpoint trial is
the accurate assessment of prevalent infections at baseline and
incident infections during follow-up. In addition, the durability of
protection from infection will be a critical factor determining
whether an impact could be observed at the population level. Un-
fortunately, there is no microbiological assay that can directly
measure the M. tuberculosis bacillary burden in tissues that are
readily and repeatedly sampled in large trial cohorts during the
paucibacillary early stages of infection. Instead, the use of M. tu-
berculosis-specific immunological assays is the only viable option,
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such as TST and IGRAs (T-SPOT and QFT-TB Gold). The precise
sensitivity and specificity of these assays as used for infection end-
points and baseline screening for prevalent infections are uncer-
tain because of the lack of a true gold-standard measure of infec-
tion and uncertainties in the dynamics of the cellular immune
response to infection. The operating characteristics for these as-
says were developed for settings in which the infection is not en-
demic and may require additional assessment before use in a vac-
cine trial in a setting with endemicity. In addition, the current
IGRAs are all focused on IFN-y measurements with a limited dy-
namic range. Therefore, it may be beneficial to move beyond pure
reliance on IFN-vy to identify assays with a larger dynamic range.
The potential for tuning the parameters of the assays (e.g., specific
threshold values for positivity calls and replicate assays to mini-
mize technical variation) will need to be carefully considered, al-
though without a gold-standard assay these exercises will neces-
sarily be driven by judgment calls rather than precisely measured
operating characteristics.

Screening at baseline to exclude subjects with prevalent infec-
tions from enrollment will necessarily miss those infections so
recent that measureable cellular responses have yet to mature. If
vaccination after infection is not protective, then inclusion of the
subset of recent prevalent infections in the trial cohort can atten-
uate the observed vaccine efficacy and degrade statistical power.
The kinetics of cellular responses in immunocompetent individ-
uals suggests that analyses of endpoints occurring at least 2 to 3
months from baseline will provide the time to wash out the effects
of the prevalent infections and recover an accurate estimate of
vaccine efficacy specific to preexposure vaccination.

The phenomenon of reversion occurs in a small but important
fraction of IGRA converters in whom measured cellular responses
above the threshold for positivity decline to levels below that
threshold. It is unclear whether this phenomenon represents a
host-side immunological defect (i.e., in the durability of cellular
responses to M. tuberculosis) or evolution of the infection to a state
that is so immunologically silent that the cellular response con-
tracts to immeasurable levels. The latter may be due to a host-side
immunological success in clearance of infection or to a pathogen-
side success in establishing immunologically silent latent infection
(as discussed above in Biological and Immunological Intervention
Points from Exposure to Infection). It is important for a trial to
capture information about reversion as an important secondary
endpoint defining vaccine efficacy and as a biomarker to provide
insight into possible mechanisms of vaccine action. The definition
of a secondary trial endpoint capturing “sustained conversion”
provides one approach to dealing with the phenomenon of rever-
sion. Sustained conversion might be operationally captured by
initiating a more intense follow-up schedule for study subjects
who have a primary conversion endpoint, during which a longi-
tudinal series of assays would be performed to document the per-
sistence of conversion for some predefined period of time. This
approach would result in the identification of a subset of the pri-
mary endpoints that represent sustained converters, and the im-
pact of vaccination on the relative rate of occurrence for this more
stringent endpoint would be defined. Exploratory analyses could
further examine the impact of vaccination on the rate of reversion
(among converters in vaccine and placebo groups); however, this
analysis would not have the rigor of a fully randomized compari-
son, as it is based on a subgroup defined postrandomization. An
important ethical consideration in the endpoint selection is the
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recommendation for INH treatment for QFT conversions. Given
that recently infected individuals are in a high-risk group for de-
veloping active TB, there should potentially be a recommendation
to treat with INH for LTBI after that endpoint is reached. Such a
recommendation may not be appropriate in countries with high
TB burdens among populations at high risk for reinfection (175).
Capturing the “sustained conversion” endpoint (requiring 2 con-
secutive positive QFTs to deal with the possibility of false posi-
tives) would likely be ethical if the period between tests is short
enough to minimize the risk of developing active TB (e.g., 1
month).

In some situations, endpoint assays are known to have imper-
fect sensitivity and specificity relative to a gold-standard clinical
endpoint, and vaccine efficacy is defined based on the underlying
true clinical endpoint. In these cases, the attenuation of vaccine
efficacy by use of the imperfect endpoint assay in a trial can be
defined (176). Trial design exercises can then account for this
attenuation by increasing sample size to ensure power to detect
levels of true vaccine efficacy based on the smaller levels of efficacy
that can be observed in the trial. It is natural to think of applying
this approach to the design of infection endpoint trials for M.
tuberculosis; however, its application should be carefully consid-
ered. The lack of a gold-standard clinical endpoint definition and
the resulting imprecision in characterizing endpoint assay sensi-
tivity and specificity argue against this approach.

Another issue in the design of infection endpoint trials relates to
the trial objectives and balance of risks for false-positive and false-
negative outcomes. In most standard trial designs, the risk of a
false-positive outcome is paramount, and careful attention is paid
to control of “alpha” to very low levels (e.g., 0.025 1-sided). Rela-
tively less concern is given to false-negative outcomes, where sam-
ple size is often determined given fixed “alpha” as a trade-off be-
tween trial cost, logistics, and risk for false-negative outcomes
(e.g., 0.20) at some fixed important level of vaccine efficacy. As
described above, the motivation of an infection endpoint trial is
one of up-selection of candidate vaccines, and as such, the balance
between risks of false-positive and false-negative outcomes is
arguably more balanced than is usual. Thus, for such trials it is
reasonable to consider designs that have somewhat larger-than-
standard false-positive rates and somewhat lower-than-standard
false-negative rates (e.g., both at 0.05 or even 0.10). For endpoint-
driven trial designs to distinguish VE of 60% versus 0%, if per-
formed in South African adolescent populations, would require
sample sizes in the range of 1,000 to 3,000 and followed for less
than 2 years.

Implementation

Ifan efficacious prevention-of-infection vaccine is developed, sev-
eral implementation issues would need to be considered. First,
would such a vaccine replace BCG or be used in a prime-boost
strategy (BCG prime with boost from the new vaccine)? Prime-
boost combinations would need to be carefully evaluated due to
the possibility of BCG priming a variety of immune responses that
could be beneficial or deleterious. Second, replacement of BCG
with a new vaccine would pose implementation challenges and
might require substantial changes in population attitudes as well
as the health care delivery system to be successful.
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CONCLUSION

With focused attention on M. tuberculosis as an infection end-
point, the benefits of smaller sample sizes in efficacy trials would
enable a rational stepwise vaccine research agenda that culminates
in trials with TB disease as the endpoint. The challenges are many
and include prioritization of vaccine products and selection of
endpoint assays, endpoint definitions, sample sizes, and target
populations. Although there are many challenges to be solved for
successful development of a preexposure TB vaccine, there are
also numerous opportunities.
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